Главная страница сайта О веществе TiO2
Виды диоксида титана Статьи о диоксиде титана
Использование диоксида титана в ЛКМ Ваши вопросы о двуокиси титана


ширения шва и зоны при последующем охлаждении. Отсюда следует, что влияние состава металла шва на деформацию аустенита в околошовной зоне закаливающихся сталей будет тем значительнее, чем больше разница в температурах превращения аустенита в этих зонах сварного соединения.

Таким образом, перед началом превращения аустенит подвергается небольшой по величине внутренней деформации растяжения, продольная составляющая которой равна 0,7—1,8%. Эта деформация тем больше, чем ниже температура начала превращения аустенита в околошовной зоне и чем выше эта температура превращения в шве. Хотя по своей величине упругопластическая деформация аустенита невелика, она, как будет показано в гл. V и VI, может оказывать существенное влияние на кинетику мартенситного превращения и на сопротивляемость металла околошовной зоны образованию холодных трещин. При этом существенное значение приобретает разница в температурах превращения аустенита в шве и околошовной зоне, однако не столько в связи с изменением величины деформации, сколько из-за возникновения различий в условиях и степени развития релаксационных процессов в аустените.

В процессе последующего превращения аустенита в околошовной зоне развиваются небольшие сжимающие деформации и напряжения. Величина их в легированных сталях больше, чем в малоуглеродистых (см. рис. 12, б и е). Одновременно с понижением температуры начала превращения аустенита в мартенситную область (особенно ниже 350°) восстановление растягивающих продольных напряжений к моменту полного выравнивания температуры становится маловероятным. Например, в сталях 25ХН4, 35СГ и 50ХВС возникают даже заметные сжимающие напряжения.

Существенное увеличение влияния превращения аустенита на величину и знак остаточных внутренних деформаций и особенно напряжений при переходе от малоуглеродистых к легированным сталям в сравнении со сталью ОХ18Н9Т обусловлено тремя основными причинами:

1) протеканием ферритного и перлитного превращений (малоуглеродистая сталь) при высоких температурах, когда металл слабо сопротивляется пластической деформации, а бейнитного и мартенситного превращений (легированная сталь) — при относительно низких температурах, при которых металл обладает более высокой сопротивляемостью пластической деформации и значительными упругими свойствами;

2) большей величиной разности между удельными объемами мартенсита и аустенита, чем феррита (или феррито-карбидных смесей *) и аустенита;

3) возрастанием этой разности с понижением температуры, так как коэффициент линейного расширения у мартенсита меньше, чем у аустенита.

В. Н. Земзин [88] и П. А. Мельников [89] также показали, что в околошовной зоне закаливающихся легированных сталей развиваются продольные деформации и напряжения сжатия. Кроме того, они обнаружили, что по обе стороны от околошовной зоны при переходе к шву или основному металлу продольные напряжения изменяются скачкообразно. При этом в основном металле они всегда растягивающие, а в шве их знак зависит от типа электродов, т. е. состава наплавленного металла. Чем ниже температура превращения аустенита в металле шва, тем вероятнее развитие в нем сжимающих напряжений.

Для анализа кинетики развития деформаций при сварке и их влияния на технологическую прочность, а также структуру и свойства околошов-

1 Справедливо для сталей с содержанием углерода примерно до 0,5% , так как удельный объем у карбидов, как правило, больше, чем у мартенсита.


 

 

Вернуться в меню книги (стр. 1-100)

 

На правах рекламы

Токсичен ли диоксид титана?
Приведены данные о токсичности двуокиси титана, видам опасности TiO2 и особенностям воздействия на организм

 

Copyright © 2008-2012 TitanDioxide.Ru

Использование материалов сайта возможно при условии указания активной ссылки
Диоксид титана TiO2